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Abstract

A perturbative calculation is given of the behavior of a continuous jet
of conducting fluid as it enters and leaves a solenoidal magnetic field. It
is assumed that the changes in direction, jet cross section and velocity are
small.

If the jet enters the field along, or close to the axis, then the induced
forces are compressive and retarding. The jet slows, suffers an increase in
hydrostatic pressure, and increases in diameter; later, the jet re accelerates
and shrinks. As the jet leaves the field, the hydrostatic pressure becomes
negative and cavitation may occur.

If the jet enters at an angle to the axis, there are, in addition, deflec-
tions and elliptical deformations of the jet.

Formulae are given for these effects and numerical values given for the
example of a solenoidal field with a Gaussian axial profile.
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1 Introduction

A mercury jet, injected at an angle respect to the axis of the solenoidal field,
is the current baseline solution for the Feasibility Study II[1]. The interaction
of the liquid-metal jet with the strong 20 T target solenoid has as result a
number of forces on the jet which potentially may affect the viability of this
target.[2],[3],[4] We present here perturbative calculations which confirm the
findings of previous authors.

2 Formulae

2.1 Introduction

The jet is assumed to have an initial radius r, and be traveling at a velocity v.
Changes in radius, shape, direction and velocity are all assumed to be small.
The angle between the jet and solenoid axes is also assumed to be small.

No viscosity
r << L
In the following formulae, the coordinate system is defined by the jet; z is

along the direction of motion and r is perpendicular to z.
If the jet is not directed along the solenoid axis, then we also define y in a

direction perpendicular to z (the jet axis) and away from the solenoid axis; and
x perpendicular to y and z; and we define a second coordinate system x y′ z′,
where z′ is aligned along the magnet axis. Assuming a small angle θ2 << 1
then (See fig. 2.1):

x′ ≈ x

,
y′ ≈ yo + z θ
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Figure 1: Schematic of the geometrical arrangement of solenoid and jet

,
r′2 ≈ r2 + 2z yo θ

,
z′ ≈ z − yo

2.2 Induced azimuthal current

The magnetic flux through a circle of radius r perpendicular to the jet axis is

Φ =
∫

S

dS�n · �B ≈ πr2Bz(x, y, z) (1)

As a liquid metal jet passes axially down such a field at a velocity v = dz/dt, a
circumferential potential will be generated[6]

V ≡
∮
�E · �dl = −dΦ

dt
= πr2v

dBz(x, y, z)
dz

(2)

If the metal electrical conductivity σ is low enough so that the resulting current
has a negligible effect on the field, then the azimuthal current density iφ will be

iφ ≈ V

2πr
σ (3)

iφ ≈ rvκ

2
dBz(0, 0, z)

dz
(4)
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2.3 Radial forces and Hydrostatic pressure

The induced radial force per unit volume (dr r dφdz) is

fr = Bziφ ≈ r

2
vκ Bz

dBz

dz
(5)

If we assume the effects of the fields are small so that the jet radius and liquid
velocities do not vary by large fractions, and if we ignore radial inertia, then the
hydrostatic pressures in a jet of outside radius ro, at radius r, will be given by

p(r, z) =
∫ r

ro

−frdr ≈
(
r2o − r2

4

)
vκ Bz

dBz

dz
(6)

2.4 Axial force

The above hydrostatic pressure is a function of z, and gradients in it will ex-
ert axial pressures fp on the liquid that must be added to the magnetic term
fz(hydrostatic).

fp(hydrostatic) =
dp(r, z)
dz

≈ −
(
r2o − r2

4

)
vκ

d

dz

(
Bz
dBz

dz

)
(7)
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To this must be added the axial forces induced directly by the fields acting
on the asymuthal currents:

If the jet is aligned with the field axis (θ = 0, the radial field is given by

Br(θ = 0) ≈ − r
2
∂Bz(0, 0, z)

∂z
(8)

The induced axial force per unit volume (dr dφ dz) is

fz(θ = 0) = fp(r, z) − Briφ

If the jet is at an able to the magnetic axis, then there is an additional shear
force:

fz(θ) = fp(r, z) − Byiφ sin(φ)

giving, in all:

fz ≈ −
(
r2o − r2

4

)
vκ

d

dz

(
Bz
dBz

dz

)
+
r2

4
vκ

(
dBz

dz

)2

+
rvκ

2
By
dBz

dz
sin(φ)

(9)
On the jet axis:

fz ≈ −
(
r2o
4

)
vκ

d

dz

(
Bz
dBz

dz

)
(10)

On the outer surface, averaged over the azymuthal angle φ, or in the absence of
a By:

fz ≈ d

dz

(
Bz
dBz

dz

)
+
r2

4
vκ

(
dBz

dz

)2

(11)
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On the outer surface, with a finite By, as in the case of a jet at an angle to the
magnetic axis:

fz ≈ d

dz

(
Bz
dBz

dz

)
+
r2o
4
vκ

(
dBz

dz

)2

+
yvκ

2
By

dBz

dz
(12)

and the average force of the disk of radius ro is given by integrating the
terms

< fz >≈ r2o
8
vκ

((
dBz

dz

)2

+
d

dz

(
Bz

dBz

dz

))
(13)

2.5 Axial accelerations

These forces will then decelerate, or accelerate layers of the fluid, thus inducing
differences of liquid velocity as a function of radius

dv

dz
=

f

ρ v
(14)

∆ v(r, z) =
∫ z

zo

(fz + fp)
1
vρ
dz (15)

The average change in velocity is then

< ∆v > (z) =
κ

ρ

r2o
8

(∫ z

zo

(
dBz

dz

)2

+
d

dz

(
Bz
dBz

dz

)
dz

)
(16)

and the radius as a function of z is

r(z) = ro

(
1 − < ∆v > (z)

v

)
(17)

2.6 Transverse forces and deflections
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¿From above, the radial force per unit volume (dr r dφdz) is

fr = Bziφ ≈ r

2
vκ Bz

dBz

dz
(18)

If Bz varies with a transverse distance y, then the component of this radial force
in the y direction is

fy = fr sinφ (19)

and the net deflective force dFy per unit length dz is

dFy

dz
=
∫ r

o

∫ 2π

o

r

2
vκ
dBz

dy
r sinφ2 dBz

dz
r drdφ (20)

=
vκ

2
dBz

dy

dBz

dz

∫ 2π

o

sinφ2dφ

∫ r

o

r3 dr (21)

=
π

8
vκ r4

dBz

dy

dBz

dz
(22)

and the change in transverse velocity

dvy
dz

=
1
v

dvy
dt

=
dFy

dz dz

vρπr2dz

=
κr2

8ρ
dBz

dy

dBz

dz

and the inverse radius of bend is

d2y

dz2
=
dθ

dz
=

κ r2

8 v ρ
dBz

dy

dBz

dz
(23)
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2.7 Induced axial current

Consider a transverse field component By

The magnetic flux between transverse positions −x to x and dz is

dΦy = 2xdzBy(z) (24)

As a liquid metal jet passes axially down such a field at a velocity v = dz/dt,
axial voltage gradients will be generated

G = x
dBy

dz
v (25)

If the metal electrical conductivity κ is low enough so that the resulting current
has a negligible effect on the field, then the axial current density iz will be

iz = Gσ (26)

iz = xvκ
dBy(0, 0, z)

dz
(27)

2.8 Transverse elliptical distortion

If the jet is not on the solenoid axis, the axial induced currents interacting with
the transverse fields will generate distorting forces on the jet. These transverse
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forces per unit volume dx dy dz are

fx = iz By = x v κ By
dBy

dz
(28)

This force will distrot the cross section. Assuming that the liquid in incom-
presible, we must find the induced pressures and motions ∆�r within the cross
section that are driven by this force, with the constraint that the diverence of
these motions is zero:

Div(∆�r) = 0

Defining

Fo = v κ By
dBy

dz

so that the magnet force per unit volume:

fx(magnetic) = x Fo

2.8.1 Magnetic Forces

The pressure on the surface of the jet will be independent of azymuth φ:

p(ro)circular = patm + T/ro ,

T being the surface tension. If the initial cross section is circular, we can consider
pressures within the cross section:

p = po − r2
Fo

4

where po is set by the constraint the above surface pressure at r = ro. This bulk
pressure will induce radial pressure forces:

fr(pressure) =
dp

dr
= − r Fo

2
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so

fx(total) = Fo

(
x − r cos(φ)

2

)
=
x Fo

2

fy(total) = − Fo r sin(φ)
2

= − y Fo

2
and the accelerations:

d2x, y

dz2
=
fx,y

v2 ρ

will give dispacements:

∆x =
∫ ∫

fx,y

v2 ρ
dz2 = x

κ

2 v ρ

∫ ∫
By

dBy

dz
dz2

∆y =
∫ ∫

fx,y

v2 ρ
dz2 = − y κ

2 v ρ

∫ ∫
By

dBy

dz
dz2

Such motions are quadrupole ( see fig ***) and, as required, giveDiv (dx, dy) = 0.
The resulting ellipticity ε = ∆xo

ro
= − ∆yo

ro
:

ε(z) =
ro κ

2 v ρ

∫ ∫
By

dBy

dz
dz2 (29)

2.8.2 Surface Tension Forces

Once the cross section becomes somewhat elliptical (we consider only a small
ellipticity), then the pressure at the surface is no longer independent of the
asymuthal angle φ, but is given by:

p(r = ro) = patm +
T

r0
(1 − ε) cos(2 φ)

Consider, in addition to those given above for the circular case, pressures
within the cross section:
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p(x, y)elliptical = po +
T ε

ro

(
cos2(2 φ) − sin2(2 φ)

)
= po +

T ε

r3o
(x2 − y2)

which has the correct values at r = ro.
Defining

So =
2 T ε
r3o

,

the resulting bulk forces are:

fx(elliptical) =
dp

dx
= x So

fy(elliptical) =
dp

dy
= − y So

which are, once again, quadrupole forces that will generate quadrupole motions
with Div( �dr)=0.

∆x,∆y =
∫ ∫

(x, − y)
v ρ

So dz
2

2.8.3 Magnetic and Surface Tension Forces

Adding these surface tension dispalcements to the forces derived for the circular
case:

∆x,∆y = (x, − y)
∫ ∫ (

κ

2 v ρ
By

dBy

dz
+

2 T ε
v ρ r3o

)
dz2

and the resulting ellipticity ε = ∆xo

ro
= − ∆yo

ro
:

ε(z) =
∫ ∫ (

ro κ

2 v ρ
By

dBy

dz
+

2 T ε
v ρ r2o

)
dz2 (30)

3 Gaussian Case

We can consider a field that varies as a Gaussian in z The fields of the solenoid
and coordinates are denoted with primes (′).

The Fields in the magnet system are:

B′
z(r

′, z′) ≈ Boe
− z′2

2σ2
z − 1

4
r′2
∂2B′

z(0, z
′)

∂z′2
(31)

B′
r(r

′, z′) ≈ −1
2
r′
∂B′

z(0, z
′)

∂z′
(32)
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In the coordinate system of the jet, see Fig. 2.1, assuming a very small angle
θ then x′ = x, y′ = yo + zθ, r′2 = r2 +2zyoθ and z′ = z− yoθ and the fields are

Bz(x, y, z) ≈
[
B′

z(r
′, z′)− 1

2
θ yo

∂B′
z(0, z

′)
∂z′

]

Bx(x, y, z) ≈ −1
2
x
∂B′

z(0, z
′)

∂z′

By(x, y, z) ≈ −
[
1
2
( yo + zθ)

∂B′
z(0, z

′)
∂z′

− θB′
z(r

′, z′)
]

∂Bz(x, y, z)
∂z

≈
[
∂B′

z(0, z
′)

∂z′
− 1

2
yo θ

∂2B′
z(0, z

′)
∂z′2

]
dBy(x, y, z)

dz
≈

[
1
2
θ
∂B′

z(0, z
′)

∂z′
− 1

2
( yo + zθ)

∂2B′
z(0, z

′)
∂z′2

]
(33)

4 Early Example

In our earlier studies we had considered a jet entering from outside the field,
with the following parameters:

σr 3 mm
ro 10 mm
vo 20 m/sec
θ 100 mrad
σz 0.6 m

Using the above fomulae we obtain the results plotted in fig***.
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c)
σz= .6 (m) θ=-.1 vo= 20 (m/s) r= 10 (mm)
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f)
σz= .6 (m) θ=-.1 vo= 20 (m/s) r= 10 (mm)
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min 0%
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-250

0

250

500

750

max 171%
min -342%
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It is seen that although the deflection of the jet is small (3mm) and the
average decelleration is reasonable (0.5 m/sec, yet there are several unacceptable
results:

• The hydrostatic pressure falls to -1.5 atmosphers, and would require a
high pressure environment to stop the jet breaking up.

• There are shear accelerations of +/− 11 m/sec. leading to a 3:1 ratio of
velocity across the jet.

• The calculated distortion with surface tension included is 340% (without
the surface tension it is 700%), indicating that the calculation is beyond
its valid region. But indicating that the jet will be badly disrupted.

Clearly these parameters are unacceptable.

5 Study 2 Example

For Study 2, several parameters were changed from the above example. The jet
radius was halved, the jet velocity increased, the magnetic field was kept flatter,
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and the nozzle introduced inside the magnetic field.
The beam with rms radius σr intersects a mercury jet of radius ro at an angle

θcrossing. The forward velocity of the jet is vo. The intervals between pulses is
t, and it will be assumed here that after a pulse, all the mercury outside of the
nozzle is dispersed. The nozzle is at znozzel with respect to the intersection of
the beam and jet center lines. Consider the following parameters:

σr 1.5 mm
ro 5 mm
θcrossing 33 mrad
vo 30 m/sec
t 20 ms
znozzel -.375 m

re
l
in

te
ra

ct
io

n
s

2.49 %
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ii
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length from target end (cm)
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Hg jet

❛❛❛❛❛❛❛❛❛❛❛❛❛❛❛❛❛❛❛❛❛

❛❛❛❛❛❛❛❛❛❛❛❛❛❛❛❛❛❛❛❛❛

❛❛❛❛❛❛❛❛❛❛❛❛❛❛❛❛❛❛❛❛❛ p beam

Fig***

The geometry is shown in fig***, with the distribution of resulting interac-
tions as a function of z is shown above. At the time of a second, or subsequent
bunch, the newly established jet will extend a distance zjet = vo t = 0.6 m from
the nozzle. It is seen that only 2.5 % of the interactions would occur after this
location, had the beam extended indefinitely. Thus there is a negligible loss
from this limited jet extent.
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Thus the total length over which the jet must propagate without serious
magnetic disruption is from the nozzle to a point 0.6 m downstream. In order
to minimize the field non uniformity over this length, the magnetic center (ap-
proximate point of maximum Bz is placed at the center of this length. i.e. the
magnetic center is set at a distance zmagnet = zjet/2− znozzel = − .15 m with
respect to the jet-beam intersection.

The proton beam enters at an angle θbeam with respect to the magnet axis.
The jet is at an angle θjet = θbeam − θcrossing. The vertical distance yo from
the magnet center (z = 0, r = 0) to the jet axis at z = 0 can be chosen to
minimize beam disruption. We assuming a Gaussian distribution of B′

z vs z′,
with a maximum value of Bo, The jet conductivity κ, density ρ, and surface
tension Tsurface, and the other parameters are given below:

Bo 20 T
σ′z .8 m
θjet -100 mrad
κ 106 Ω m
ρ 13.5 104 kg/m3

Tsurface .456 N/m
pgas = patmospheric 105 N/m2

The following figures shown here use a horizontal scale with z = 0 at the
magnetic center. Plots are shown for

a) The axial magnetic field Bz

b) The hydrostatic pressure on the jet axis with respect to the environment
outside the jet (paxis − pgas)

c) The average deceleration of the jet ∆v(Ave)

d) The maximum shear acceleration/deceleration of the upper/lower limits
of the jet ∆v(shear)

e) The vertical displacement of the jet due to deflecting forces y

f) The total transverse distorting forces Fdistort

1. The resulting elliptical distortion (δx/r=−δy/r), without and without sur-
face tension
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We see that over the extent of the new jet (from - .3 to .3 m):

• The maximum axial field deviations are +/− 1.1 T = 5%
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• The axial pressure difference has a minimum of - 0.25 atmospheres. Thus
if the jet is operating in a gas (He or Argon) at a pressure greater than or
equal to .25 atmosphere, then the negative pressures will be avoided, and
there will be no tendency to cavitate prior to the arrival of the beam.

• The maximum average deceleration of the jet is very small compared to
the average jet velocity: 0.06/30≈0.2%.

• The maximum decelerations (from shear forces) are also small compared
to the average jet velocity: 0.4/30≈1.3%.

• The deflections of the jet are very small: 5 µm.

• The jet distortions (∆ width / ave width) are approximately 0.4% without
surface tension, and less than 0.2

Beyond the target region (z=.3 to 1.5 m), the effects are larger, but still not
sufficient to break up the jet. The maximum shear is about 5 m/sec, and the
distortion 20 %. But these numbers are probably meaningless, since the jet will
have been disrupted by the beam. These results are much better than in the
earlier example and are considered to be acceptable.

6 Coil Design

The coil dimensions are given in the following table and plotted in figure a.
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len1 gap dl rad dr I/A n I n I l
m m m m m A/mm2 A A m
Fe

0.980 0.980 0.108 0.000 0.313 0.00 0.00 0.00
1.088 -.000 0.312 0.000 0.168 0.00 0.00 0.00
Hollow
1.288 -.112 0.749 0.178 0.054 -24.37 0.98 1.26
1.288 -.749 0.877 0.231 0.122 -19.07 2.04 3.74
1.288 -.877 1.073 0.353 0.137 -14.87 2.18 5.78
SC
0.747 -1.614 1.781 0.636 0.642 -23.39 26.77 160.95
2.628 0.100 0.729 0.686 0.325 -25.48 6.04 32.23
3.457 0.100 0.999 0.776 0.212 -29.73 6.29 34.86
4.556 0.100 1.550 0.776 0.107 -38.26 6.36 33.15
6.206 0.100 1.859 0.776 0.066 -49.39 6.02 30.59
8.000 -.065 0.103 0.416 0.051 -68.32 0.36 1.00
8.275 0.172 2.728 0.422 0.029 -69.27 5.42 14.88
11.053 0.050 1.749 0.422 0.023 -75.62 3.00 8.18
12.852 0.050 1.750 0.422 0.019 -77.37 2.61 7.09
14.652 0.050 1.749 0.422 0.017 -78.78 2.30 6.22
16.451 0.050 1.750 0.422 0.015 -79.90 2.07 5.59
18.251 0.050 2.366 0.422 0.013 -80.85 2.53 6.80

The axial fields are shown in figures b and c. The components are shown
from: the use of iron (green), superconductors (blue), and the total (red). The
Gaussian distribution used in the above calculations is also given in figfure c
(black), and is seen to be a good match to the total field over thetarget region
(-.6 m to 0).
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7 Conclusion

• It is not acceptable to have the jet nozzle outside the magnetic field.

• With the study 2 parameters, all disruptive effects are negligible up to the
distance traveled by the jet since the last pulse.

• Even beyond this location, the disruptions are not unreasonable, and
would not, of themselves disrupt the jet.

• It would probably be acceptable to shorten the high field region, if this
were desired for cost reasons.
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